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An asymptotic solution is found for the temperature and circulation structure for an 
unsteady two-dimensional model of the thermal bar phenomenon. The non-rotating 
case considered here is relevant to laboratory models of the thermal bar. The main 
implication of the asymptotic results is that the thermal bar might propagate out from 
the shore more slowly than predicted by a purely heat-balance-based estimate. The 
solution is discussed in the context of available experimental results. 

1. Introduction 
At the end of winter, the temperature of the water in many temperate lakes is less 

than 4 "C, the temperature at which water achieves its maximum density. As spring 
progresses and the water is warmed, the near-shore shallow waters heat more rapidly 
than the deeper parts. As a consequence, the 4 "C isotherm propagates out from the 
shore and to either side of it the horizontal pressure gradient has opposite signs. This 
leads to a double-cell circulation pattern with downwelling in the vicinity of the 4 "C 
isotherm. This isotherm is called the thermal bar and inhibits horizontal transport from 
the shallows to the deeper parts of the lake. A similar phenomenon occurs at the end 
of autumn as the lake waters are cooled towards 4 "C. The shallow waters cool more 
rapidly and because of the symmetry of the density relation about 4 "C, a circulation 
pattern similar to that which occurs during spring warming develops. 

The thermal bar has been the subject of a number of field experiments, most recently 
by Malm et al. (1993). In that paper, measurements of temperature and currents during 
the 1991 spring thermal bar in Lake Ladoga are reported. The main results are that the 
isotherms are nearly vertical throughout the study region and there is a significant 
amount of horizontal heat transport from the warmer near-shore waters into the 
thermal bar region. The vertical isotherms throughout the study region are in contrast 
to the results of other field studies (for example, Hubbard & Spain 1973) which show 
a stably stratified region on the warmer near-shore side of the thermal bar. The vertical 
isotherms observed by Malm et al. are due to the significant amount of wind-induced 
vertical mixing. Malm et al. also observed a complex, largely wind driven, circulation 
pattern. 

Experimental studies of the thermal bar have been carried out by Elliott & Elliott 
(1969, 1970) and Kreyman (1989). Those experiments were able to reproduce in the 
laboratory many of the features of the thermal bar observed in the field. In those 
experiments, water at less than 4 "C contained in a shallow triangular tank was heated 
from above. In the experiments of Elliott & Elliott, the heating was via infra red lamps 
which meant that most of the heat input occurs in the top 1 or 2 cm of the 13 cm deep 
tank. This led to a strongly stratified warm region in the shallow end of the tank behind 
the thermal bar and a vertically well-mixed cold region ahead of the thermal bar. This 
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FIGURE 1 .  Schematic of the flow domain and the coordinate system with the origin at the tip of 
the wedge. The solid triangle indicates the position of the fluid surface. 

is very similar to the structure observed in Lake Superior by Hubbard & Spain (1973). 
The surface heating in the experiments of Kreyman (1989) was via lamps with most of 
their heat in the visible spectrum. This meant that the heat penetrated deeper into the 
water and led to a weaker stratification in the shallows than that observed by Elliott 
& Elliott. 

Most theoretical studies of the thermal bar have concentrated on modelling the heat 
budget associated with the propagation of the thermal bar. Elliott & Elliott (1970) 
developed a two-dimensional model which ignored the horizontal transport of heat. 
They were able to obtain an expression for the position of the thermal bar as a function 
of time. Zilitinkevich, Kreiman & Terzhevik (1992) describe a more complex model 
that allows for the horizontal transport of heat from the warm shallow regions into the 
vicinity of the thermal bar thereby increasing its propagation speed. Huang (1972) 
derived an asymptotic solution (based on small Rossby number) for the steady-state 
temperature and circulation pattern of an idealized model of Lake Michigan. Elliott 
(1970) developed a model for the circulation associated with the thermal bar by 
assuming a balance between vertical shear and the horizontal pressure gradient. In that 
model, the flow was driven by an unsteady temperature field derived by a one- 
dimensional (in the vertical) diffusion equation with a surface heat flux. Elliott found 
good agreement between his results and the experimental results of Elliott & Elliott 
(1969, 1970). 

Bennett (1971) carried out a numerical investigation of the thermal bar. Bennett's 
model was fully three-dimensional and included rotational effects. The results 
predicted that motion would be largely confined to the warm near-shore region and 
that the flow would be in geostrophic balance. He also concluded that horizontal 
heat transport could be important in the shallows but that there appeared to be no 
significant heat transport into the thermal bar region. 

In the current work, an asymptotic solution based on the smallness of the bottom 
slope is found for an unsteady non-rotating two-dimensional model of the thermal bar 
phenomenon. The observations of Malm et al. (1993) show that the thermal bar moves 
into deep water more rapidly than a viscous balance can occur; thus unsteady inertial 
effects could be important in determining the overall circulation pattern. The results of 
the asymptotic analysis will be discussed in the context of available experimental 
results. 
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2. Model formulation 
The spring thermal bar is modelled by the unsteady two-dimensional natural 

convection of an incompressible fluid contained in the non-rotating triangular domain 
lying between the lines z = 0 and z = - A x  where A is the bottom slope, in the (x,z)-  
plane. A schematic of the flow domain and coordinate system is shown in figure 1. 
Density differences associated with the thermal bar are generally quite small so the 
Boussinesq approximation is appropriate. The equations governing the flow and 
temperature are therefore 

aT aT aT 
-+u-+w- = KV,T+Q, 
at ax a Z  

au aw 
ax a Z  
-+- = 0, 

(3) 

(4) 

where u and w are the horizontal and vertical velocities respectively, T is the 
temperature, p is the pressure perturbation, p is the density, po is the reference density, 
v is the kinematic viscosity, K is the thermal diffusivity and g is the acceleration due to 
gravity. The model is driven by the heat source term Q in (3). The precise form of Q 
is specified later in this section. 

For the thermal bar, the nonlinear relationship between p and T is of particular 
importance. In this work, this relationship is assumed to take the form 

where AT = T- T,, po = p(TJ and a,, a, and b are all constants dependent on q. The 
above form for p is obtained by truncating the representation found in Gebhart et al. 
(1988, Appendix F ) .  The truncated form ( 5 )  is quite accurate over the range of 
temperatures associated with the thermal bar and captures the linear relationship for 
large and small T as well as the quadratic relationship near the density maximum. 
Table 1 gives values of the constants in (5 )  for various values of T,. The 
temperature/density relationship ( 5 )  is a little more complicated than the usual 
quadratic form associated with modelling water close to its density maximum. The 
more complicated form is introduced here to ensure that fluid velocities vanish as 
x+o. 

The flow in this model is driven by a flux of heat into the fluid represented by the 
heat source term Q on the right-hand side of (3). In this model, it is assumed that a 
spatially uniform surface heat flux of I, W rn-, is distributed uniformly over the local 
depth. The assumption of a vertically uniform source of heat is a considerable 
simplification of the heat input and output mechanisms operant in a real lake. In 
particular, most of the heating occurs at or near the surface. The heating in a real lake 
also varies spatially and with time. A more sophisticated model for the thermal forcing 
would considerably complicate the subsequent analysis as well as involve extra 
parameters that would need to be specified. Also, the interest in this paper is in the bulk 
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T, Po a1 a2 b 

0 999.8396 6.836 x 8.396 x 1.145 x 
1 999.8986 5.031 x 8.301 x 1.132 x 
2 999.9400 3.286 x 8.207 x 1.119 x 
3 999.9643 1.599 x 8.116 x 1.107 x lo-* 

(“C) (kg m-3) (“C-1) (“C-2) (“C-1) 

TABLE 1 .  Values for the constants p,,, a,, a2 and b in (5) for various values of 
the reference temperature T,. 

behaviour of the thermal bar rather than the details of the thermal forcing. It is for 
these reasons that this work is restricted to vertically uniform heating. The assumptions 
outlined above yield an expression for Q dependent only on x: 

Q = I , / @ ,  C, AX) “C s-’, (6) 

where C, is the specific heat of water. The x-dependence in (6) will give rise to 
horizontal gradients in temperature that will subsequently drive a flow. 

To complete the model, it only remains to specify the boundary and initial 
conditions. The surface is supposed to be stress free and not deformed, which leads to 
the boundary conditions 

(7) 
32.4 
- = w = O  on z=O. aZ 

The bottom boundary is supposed to be rigid and non-slip and so 

u = w = O  on z=-Ax. (8) 

It is assumed that all the heat input is included in the heat source term Q. This means 
that there are no heat fluxes through either the upper or lower boundaries, thus 

- = 0  on z=O,  
aT 
a Z  

i3T aT 
A - + - = O  on z=-Ax. 

ax aZ 

(9) 

The model is started from rest with the fluid at a uniform temperature T,, so the initial 
conditions are 

Finally, as x+ 00, the dependent variables relax to the initial conditions. 

u = w = O ,  T = T ,  at t = 0 .  (1 1) 

3. Asymptotic solution 
Unfortunately the model outlined in the previous section does not admit a general 

analytic solution. In this section, an asymptotic solution as the bottom slope A --f 0 is 
obtained. To this end, the system of equations defining the model is first non- 
dimensionalized. 

Neither the geometry of the flow domain nor the form of the forcing provide any 
obvious time or length scales. However, scales can be derived in the following way. 
Balancing the unsteady and source terms in (3) yields a scale for T- T, : 

T-  T, - I,  t/Go C, AX). (12) 
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The horizontal position at which T = T, (where T, is a temperature scale) is given by 

xm - 10 t/((Trn - T,) P O  Cp A )  (13) 
where the local depth will be h, = Ax,. Viscous effects will be felt over the depth h, 
in a time scale T = hk,/v. Identifying t with 7 yields length and time scales for this 
model : 

The temperature T, needs to be specified and the obvious physical choice is the 
temperature at which the water density is at its maximum. However, for algebraic 
convenience, T, is chosen so that the numerator of ( 5 )  is at its maximum, that is 
T, - T, = a,/2aZ. In practice, T, is very close to the maximum density temperature. 
The time scale (16) can be interpreted as the time after which viscous effects cease to be 
felt over the entire water depth at the thermal bar. 

Balancing the buoyancy and pressure gradient terms in (2) yields a scale for the 
pressure perturbation p - gh Apo where Apo = p a  a;/(2aZ) and h is given by (1 5). 
Substituting this scale into (1) and balancing the viscous and pressure gradient terms 
yields a scale for the horizontal velocity: 

u - U = AGrh/T, 

Gr = g Apo h3/p0 v'. 

(17) 

(18) 
Finally, the continuity equation (4) yields a scale for w - AU.  

The scales outlined above can be used to non-dimensionalize the model equations of 
8 2. The non-dimensional equations are still intractable but an asymptotic solution can 
be found as A + 0 (see Connack, Leal & Imberger 1974; Farrow & Patterson 1993). In 
the limit as A + 0 ,  the model equations become 

where the Grashof number Gr is given by 

(19) up = - ( 0 )  Pz + u g ,  

where y = ba1/2a2(z 4.66 x lo-' for T, = 0 "C), v = V / K ,  ( * ) ( O )  indicates the O(Ao) 
solution and all variables are now non-dimensional. The boundary and initial 
conditions become 

TiO) = u:O) = w(0) = 0 on = 0, (23) 
on z = - x ,  (24) T p  = u(o)  = w(o) = 0 

(25) 
Thus, at O(Ao), the flow is governed by the linearized shallow-water equations. Also, 
the asymptotics have eliminated all horizontal processes which are second-order 
effects. The horizontal coordinate x now becomes a parameter specifying the local 
conditions. 

T(0) = ~ ( 0 )  = ~ ( 0 )  = 0 at t = 0. 

The O(AO) temperature T(O) is easily found and is given by 

T(O) = t / x  (26) 
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and represents an ever increasing horizontal temperature gradient. The O(Ao) 
horizontal velocity can be found using Laplace transform methods. The details are 
contained in the Appendix and only the solution is presented here: 

where 

+ (exp (- (Pn/x)’t) - 1) yx2(y3xt  + y2x2 + 2& y + p”,) 

and Pn are the positive roots of sinp, = Pncospn. 

4. Discussion 
4.1. Temperature structure 

The O(Ao) temperature T(O) = t / x  is nothing more than then non-dimensional form of 
(12) and reflects a balance between the source term Q and the rate of increase of 
temperature. The lack of any dependence of Q on z and the insulated boundary 
conditions mean that diffusion plays no role in determining T(O). The solution 
represents an ever increasing horizontal temperature (and thus density) gradient that 
is greater towards the shore x = 0. The non-dimensional temperature at which the 
density is maximum depends weakly on y which in turn is a function of G. For 
T,, = 0 “C, the density maximum occurs at T(O) z 0.98, thus the position of the thermal 
bar is given by 

This is the non-dimensional equivalent of Elliott & Elliott’s (1970) model and its 
evolution with time is shown as the heavy solid line in figure 2. The volume-averaged 
temperature behind the thermal bar is $ z 1.96, a constant. In the model described by 
Zilitinkevich et al. (1992) there is a horizontal heat flux into the thermal bar region 
from the near-shore waters which leads to $ decreasing with time. That heat flux also 
causes the thermal bar to advance more rapidly in their model. In the asymptotic model 
of this paper, horizontal heat transfer is neglected, thus 

I ,  = 1.023t. (30) 

is constant with time. 

4.2. Velocity structure 
A summary of the overall evolution of the flow is presented in figure 2 where contours 
of the surface velocity do) J z = o  are shown in the ( t ,  x)-plane. The thin solid line is the 
zero contour and represents the point on the surface where downwelling occurs. At all 
times and all positions, the direction of the surface velocity is towards the downwelling 
front. Note that for t > 1, the downwelling front noticeably lags the thermal bar; the 
thermal bar is moving out from the shore more rapidly than the downwelling front. 
For x > 1, the main balance is between inertia and the horizontal pressure gradient. 
The lag is due to the time taken for the change in sign of the horizontal pressure 
gradient associated with the passing of the thermal bar to decelerate the existing flow. 
For x < 1, the main balance is between vertical shear and the pressure gradient ; thus 
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FIGURE 2.  Contours of the surface velocity do) I r - O  in the ( t ,  x)-plane. The contour interval is 0.05 and 
the solid contour is the zero contour. The heavy solid line indicates the position of the thermal bar 
and the + and - symbols indicate the sign of the surface velocity. 

the flow there reverses as soon as the pressure gradient changes sign. If vertical shear 
is ignored in (19) then do) is given by 

u(o)  = (0) = - ui 
+ 

[2x2(2y + 1 )  (x + y t )  log ( 1  + y t / x )  
4y3xyx + y t )  

- yt(yt(x + y t )  + 2x2( 1 + 2y))l. ( 3  1) 
This is simply a linear velocity profile and does not satisfy the stress-free and no-slip 
boundary conditions. Also, ujo) is unbounded as x + 0. It can be shown that ujo) l z n 0  = 0 
when x / t  z 0.683. Thus a purely inertial model of the flow would predict that the 
propagation speed of the downwelling front is approximately 33 % less than that of the 
thermal bar. The slope of the zero contour in figure 2 for large x is close to the value 
of 0.683 predicted by an inertial balance. 

The internal structure of the flow as it evolves is shown in figure 3 where streamlines 
at various times are plotted. In each plot, the dashed line indicates the position of the 
thermal bar at that time. At each time there is a dividing streamline that intersects the 
surface z = 0 at the downwelling front. Ahead of the dividing streamline the circulation 
is anticlockwise, while behind it the circulation is clockwise. In figure 3(a), the 
downwelling front is still in the viscous region. Thus the dividing streamline is close to 
vertical and there is a relatively weak circulation near the shore. At the later time of 
t = 3 (figure 3b), the downwelling front significantly lags the thermal bar and the 
dividing streamline now has a significant slope towards the shore. Note that the change 
in sign in the pressure gradient occurs simultaneously over the entire depth and so the 
viscous-dominated flow near the rigid bottom boundary is the first to reverse. This 
means that the dividing streamline must attach to z = - x  at x x 1.023t. As time 
increases (figure 3 c) and the flow in the vicinity of the thermal bar becomes increasingly 
dominated by inertia, the average slope of the dividing streamline decreases (from the 
vertical) eventually approaching the value of approximately - 3.01 predicted by the 
inertial balance described above. 
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FIGURE 3 .  Streamline plots at various times (a) t = 1, (b) t = 3 and (c) t = 5. In each plot, the vertical 
dashed line indicates the position of the density maximum and the arrows indicate the direction of 
the flow. The contour interval in each case is (a) 0.005, (b) 0.025 and (c) 0.05. 

FIGURE 4. Velocity profiles at various times at x = 4 as the downwelling front passes. At t = 4.5 
and t = 4.6, a three-layer velocity structure is evident. 

The tilting over of the dividing streamline is reflected in the complex structure of the 
velocity reversal. A number of velocity profiles at x = 4 as the downwelling front passes 
are shown in figure 4. At x = 4 the pressure gradient reverses at t = 3.9. The surface 
velocity does not change sign until t x 4.65 and at t = 4.5 and t = 4.6, a three-layer 
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velocity structure is evident. It has already been noted that the pressure gradient 
reversal occurs over the entire depth at the same time so the viscous-dominated flow 
next to the rigid bottom boundary is the first to reverse. As time increases (t = 4.74.9), 
the reversed flow increases in strength approximately linearly in time reflecting the 
largely inertial balance that applies at x = 4. More precisely, the background pressure 
gradient is changing with time so the magnitude of the velocities in figure 4 include 
nonlinear terms. However, over the relatively short range of times presented in figure 
4, the magnitude of the forcing has not changed much and the linear-in-t dependence 
is more obvious. 

4.3. Relation to experiments 
The most recent experimental results pertaining to the thermal bar are reported by 
Kreyman (1989) and Zilitinkevich et al. (1992). In terms of the dimensionless variables 
of this paper the experimental tank has a non-dimensional length in the range 1 = 
2-3.7. This suggests that approximately half of the flow will be in the viscous regime 
described above. The maximum fluid velocity observed in those experiments was 
approximately lop4 m s-'. Estimates of the maximum velocity from the asymptotic 
results range from 3 x to 8 x lop4 m s-' for the various experiments reported. This 
is a considerable over-estimate which could be due to a number of factors. The 
predicted maximum velocities all occur in the warm region near the shore where in the 
experimental results there is a significant amount of stable temperature stratification. 
It was noted by Farrow & Patterson (1994) that if some of the available thermal energy 
is used to create a stable stratification then there is less energy available to drive a flow. 
They reported that velocities could be an order of magnitude less in this case. Also, 
horizontal diffusion and differential heat loss through the surface would lessen the 
horizontal pressure gradient and lead to lower velocities than those predicted by the 
asymptotic results. 

In all the experiments reported by Kreyman (1989), the thermal bar progressed more 
slowly than the simple heat budget estimate of uf = I o / A T  po C, A. For all experiments, 
the measured speed was between 7 % and 36 YO less than the theoretical estimate. The 
value of 36 YO is somewhat anomalous and is based on scanty data; the next smallest 
difference is 19 YO. This difference in propagation speed is of the same order of 
magnitude as the difference between the propagation speeds of the thermal bar and the 
downwelling front in figure 2. Approximately half of the flow occurs in the inertia- 
dominated regime so the discrepancy between the theoretical estimate and the 
experimental results could be due to the advection of cooler water ahead of the 
downwelling front towards x = 0. This would be a second-order effect in the current 
asymptotic solution. The complete non-dimensional temperature equation is 

where it has been made explicit which terms are included in the O(Ao) solution. Using 
the O(Ao) solution and the parameters of Kreyman (1989) to estimate the various terms 
in (32) at (x, t) = (1,l) (i.e. halfway along the tank) yields 

T z 1, A'GruT, M 0.2, A2T, , /~ M 0.002, Q z 1. (33) 

The other terms in (32) are identically zero according to the O(Ao) solution. The above 
estimates suggest that horizontal advection could have an effect on the heat budget and 
this could lead to the difference between the predicted and measured propagation 
speeds of the thermal bar. 
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A further feature of the asymptotic results is the tilting over of the dividing 
streamline as the thermal bar moves from the viscous regime in the shallows to the 
inertial regime in the deeper waters. In the limit as the flow is dominated by an inertia 
and pressure gradient balance, the dividing streamline would be at an angle of 
approximately 19" to the horizontal. This could explain the change from symmetric to 
non-symmetric traces on either side of the thermal bar reported by Zilitinkevich et al. 
(1992). In the viscous regime, the velocity is essentially modulated by the sign and 
magnitude of the pressure gradient, whilst in the deeper waters, the inertia of the 
existing flow plays a role in the dynamics. In particular it leads to a three-layer velocity 
structure as the thermal bar passes. Another possible explanation is the presence of a 
warm surface jet emanating from the shallows similar to that observed by Ivey & 
Hamblin (1989). 

Many of the above remarks carry over to the experiments reported by Elliott & 
Elliott (1969, 1970). The experimental tank used by Elliott & Elliott was approximately 
the same size as that used by Kreyman (1988) and the magnitude of the surface heating 
was similar. The main differences between the models was that Elliott & Elliott had a 
rigid lid at the surface and infra-red lamps were used as heat sources. The rigid lid 
meant that the fluid velocity, rather than the stress, was zero at the surface. The infra- 
red lamps led to most of the heat being absorbed in the upper 1 or 2 cm of the water 
rather than more evenly over the depth of the tank. 

4.4. Validity of asymptotic solution 
Since F0) is singular at x = 0 (and hence the horizontal gradient is also singular), the 
range of validity of the asymptotic solution needs to be addressed. Also, the model of 
this paper has no steady state as heat is continuously added but none is permitted to 
escape. This means that the dependent variables are unbounded as t+ co. 

The asymptotic solution found in $ 3  can be expected to yield reasonable results as 
long as the terms not included in the O(Ao) equations are dominated by those that are 
included. Using FO) to estimate the size of the various terms in the full heat equation 
(32), the horizontal conduction term A2T,, /g  cc xP3.  The terms included in the O(Ao) 
equation are all proportional to x-l. This means that no matter how small A is, there 
will always be some region near x = 0 where the neglected conduction term is larger 
than those terms that are not neglected. An estimate of the size of this region can be 
obtained by demanding that q > A2T, , / v .  This yields a criterion for validity x > 
A(2t/~7)l'~. The effect of this failure is relatively minor. In practice, it means that the 
horizontal gradients near x = 0 will be over-estimated due to horizontal conduction 
being neglected. This in turn means that velocities there will be over-estimated. 

It can be shown that the surface velocity do) I Z z 0  has the following properties far 
from the thermal bar (so that the density/temperature relationship is linear): 

- t2/(4x), x > 1, inertial balance 
Iz=O+ tx/(96y), x < 1, viscous balance. 

u(0) 

In the inertial regime, the condition that 
of validity of the asymptotic solution 

> A2GruT, yields a time limit on the range 

113 

t < ti = (Z) 
while in the viscous regime, the same condition yields 

t < t " = ( g )  112 . 



Asymptotic model for  the hydrodynamics of the thermal bar 139 

For the experiments of Kreyman (1989), A = 0.1 and cr z 10. A representative value 
for the Grashof number is Gr = lo4. The non-dimensional length of the experimental 
tank is 1 z 3. Substitution yields ti z 0.71 and t ,  z 0.14. The time limit in the viscous 
regime is likely to be very conservative as it is based on much larger temperature 
gradients than are achieved in the laboratory. The values of ti and t ,  above indicate that 
the asymptotic results are appropriate for the initial stage of the experiments but for 
later times neglected effects, notably advection, affect the dynamics. It is not clear how 
the breakdown of the asymptotic results will appear. It could be, for example, via the 
formation of a warm surface jet similar to that observed by Ivey & Hamblin (1989). 

5. Concluding remarks 
The main conclusion to be drawn from the asymptotic results of this paper is that 

the inertia of the circulation associated with the thermal bar could reduce its 
propagation speed. The increasing importance of inertial effects as the thermal bar 
moves into deeper waters could also account for some of the experimental observations 
such as the transition to non-symmetric velocity profiles on either side of the thermal 
bar. 

There are number of generalizations that could be made to improve the model of $2. 
Uppermost is the inclusion of vertically non-uniform heating to more accurately 
represent the heating operant in the field and laboratory experiments. The results of 
Zilitinkevich et al. (1992) show that the horizontal heat transport is important for the 
propagation of the thermal bar. The asymptotic model of this paper neglects this effect 
and thus does not provide any insight into the heat transport process. For many lakes, 
Coriolis effects can also be significant. It is not clear how any of these effects can be 
included without considerably complicating the analysis of this paper. 

Further work should also include numerical simulations which would allow 
examination of the fully nonlinear problem. Even for small bottom slopes, if Gr is 
sufficiently large, the advection of heat and momentum is important in the dynamics. 

The author gratefully acknowledges useful remarks made by J. Johnson, S. Brown 
and the anonymous reviewers on earlier versions of this paper. 

Appendix 
The method for finding the O(Ao) velocity solution proceeds as follows. The pressure 

is eliminated from (1 9) and (20) by cross-differentiation. Introducing a stream function 
q+ with do) = - $ z  and w(O) = $c., yields 

The solution is found by first finding the solution to (A 1) with the forcing term on the 
right-hand side replaced by &(t), the Dirac delta function. The solution that satisfies 
boundary conditions (23)-(25) is 
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where pn are the positive roots of the equation sinp, = PncosPn. After substitution 
for T(O) and differentiation, the solution to (A 1) is given by 

yr2 + 27x - 2x2 r dr. 
( X  + Y V  

The expression for do) given by (27) follows. 
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